Proof of a conjecture concerning the direct product of bipartite graphs
نویسنده
چکیده
We prove that if the direct product of two connected bipartite graphs has isomorphic components, then one of the factors admits an automorphism that interchanges its partite sets. This proves a conjecture made by Jha, Klavžar and Zmazek in 1997 [P. Jha, S. Klavzar, B. Zmazek, Isomorphic components of Kronecker product of bipartite graphs, Discussiones Mathematicae Graph Theory 17 (1997) 302–308]. © 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملA quasicancellation property for the direct product of graphs
We are motivated by the following question concerning the direct product of graphs. If A×C ∼= B×C , what can be said about the relationship betweenA and B? If cancellation fails, what properties must A and B share?We define a structural equivalence relation∼ (called similarity) on graphs, weaker than isomorphism, for which A× C ∼= B× C implies A ∼ B. Thus cancellation holds, up to similarity. M...
متن کاملA prime factor theorem for bipartite graphs
It has long been known that the class of connected nonbipartite graphs (with loops allowed) obeys unique prime factorization over the direct product of graphs. Moreover, it is known that prime factorization is not necessarily unique in the class of connected bipartite graphs. But any prime factorization of a connected bipartite graph has exactly one bipartite factor. It has become folklore in s...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009